Bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers.
نویسندگان
چکیده
There is persuasive epidemiological evidence that regular intake of dietary bioactive polyphenolic compounds promotes human health. Because dietary polyphenolic compounds have a wide range of effects in vivo and vitro, including chelation of metals such as iron, it is prudent to test whether the regular consumption of bioactive polyphenolic components impair the utilization of dietary iron. We examined the influence of the dietary polyphenols (-) -epigallocatechin-3-gallate (EGCG) and grape seed extract (GSE) on transepithelial iron transport in Caco-2 intestinal cells. The range of EGCG and GSE concentrations used in this study was within physiological levels and did not affect the integrity of differentiated Caco-2 cell monolayers. Both EGCG and GSE decreased (P < 0.001) transepithelial iron transport. However, apical iron uptake was increased (P < 0.001) by the addition of EGCG and GSE. The increased uptake of iron might be due in part to the reducing activity of EGCG and GSE. Both EGCG and GSE reduced approximately 15% of the applied Fe(3+) to Fe(2+) in the uptake buffer. Despite the increased cellular levels of (55)Fe, the transfer of iron across the basolateral membrane of the enterocyte was extremely low, indicating that basolateral exit via ferroportin-1 was impaired, possibly through formation of a nontransportable polyphenol-iron complex. Our data show that polyphenols inhibit nonheme iron absorption by reducing basolateral iron exit rather than by decreasing apical iron import in intestinal cells.
منابع مشابه
Ascorbic acid offsets the inhibitory effect of bioactive dietary polyphenolic compounds on transepithelial iron transport in Caco-2 intestinal cells.
We previously reported that (-)-epigallocatechin-3-gallate (EGCG) and grape seed extract (GSE) at high concentration nearly blocked intestinal iron transport across the enterocyte. In this study, we aimed to determine whether small amounts of EGCG, GSE, and green tea extract (GT) are capable of inhibiting iron absorption, to examine if ascorbic acid counteracts the inhibitory action of polyphen...
متن کاملHigh specific activity heme-Fe and its application for studying heme-Fe metabolism in Caco-2 cell monolayers.
Heme-Fe is an important source of dietary iron in humans. Caco-2 cells have been used extensively to study human iron absorption with an emphasis on factors affecting nonheme iron absorption. Therefore, we examined several factors known to affect heme iron absorption. Cells grown in bicameral chambers were incubated with high specific activity [59Fe]heme alone or with 1% globin, BSA, or fatty a...
متن کاملThe use of Caco-2 cells as an in vitro method to study bioavailability of iron.
Iron absorption is essential for the maintenance of iron levels in the body, since excretion is poorly regulated. Dietary factors can influence iron absorption including low molecular weight substances such as ascorbic acid which has been shown to enhance iron transport across mucosal cell monolayers. Both in vivo and in vitro work may be carried out to study iron absorption. Studies in vivo ha...
متن کاملInteraction of vitamin C and iron.
Food iron is absorbed by the intestinal mucosa from two separate pools of heme and nonheme iron. Heme iron, derived from hemoglobin and myoglobin, is well absorbed and relatively little affected by other foods eaten in the same meal. On the other hand, the absorption of nonheme iron, the major dietary pool, is greatly influenced by meal composition. Ascorbic acid is a powerful enhancer of nonhe...
متن کاملIntestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese.
Divalent metal-ion transporter-1 (DMT1) is a widely expressed iron-preferring membrane-transport protein that serves a critical role in erythroid iron utilization. We have investigated its role in intestinal metal absorption by studying a mouse model lacking intestinal DMT1 (i.e., DMT1(int/int)). DMT1(int/int) mice exhibited a profound hypochromic-microcytic anemia, splenomegaly, and cardiomega...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of nutrition
دوره 138 9 شماره
صفحات -
تاریخ انتشار 2008